Nicholas Laviano
Software Engineering Project
SE 4560

Introduction
The goal of this project is to create 10 practical and meaningful test cases that
demonstrate different testing techniques learned in class and can be used on real
open-source codebases. | selected two different open-source projects to test: assertJ
and commons-text. These projects offer clear helper classes with different logic that are

worth testing.

For each project, | forked it from the forked ST-Spring-25, which creates a copy of the
forked repository onto my personal repository. | also created a branch for each project
called “add-test-cases” and | committed each test to the branch. These tests use

different testing techniques and target different logical behaviors in each project.

| use Maven to ensure each test passes or acts as it should, to ensure that the tests are
properly made, and to test what is needed. | created a pull request for each branch on
their project. Lastly, | will summarize my group and I's weekly check-ins and share the

help | gave as well as the help that | got.

Description of assertj
For my first 6 test cases, | am testing different methods in assertJ. assertJ is a
fluent-assertion library for Java tests that replaces the traditional assertEquals checks
with better readable and chainable assertions. It provides many features that allow
developers to make code clearer and more maintainable while it finds errors and
provides informative feedback. Different features that assertj provides are helpful failure

messages, fluent API, type-specific assertions, and no external runner needed.

Here is the link for the pull request made for assertj:

https://github.com/ST-Spring-25/assertj/pull/1

https://github.com/ST-Spring-25/assertj/pull/1

Test Case #1:
What is the class and method | am testing:

File: AbstractlterableAssert.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/jav

a/org/assertj/core/api/AbstractiterableAssert.java

- (~\assertj\assertj-core\src\main\java\org\assertj\core\api\AbstractlterableAssert.java)

Class: The AbstractlterableAssert class is a base assertion class for all iterable types in
assertj
Methods: The methods | am testing are filteredOn(Predicate<E>) and
doesNotContainNull(). The purpose of filteredOn(Predicate<E>) is to return a new
assertion object containing only elements that match the predicate. My test will focus on
filtering a list of names with a given letter, and checking if the name results with the
given letter. The purpose of doesNotContainNull() is that it will fail if any element in the
iterable is null. My test will focus on asserting a list with no null values.

What is the test:
Eile: AbstractlterableAssertTest.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java

[org/assertj/core/api/AbstractlterableAssertTest.java

- (~\assertj\assertj-core\src\test\java\org\assertj\core\api\AbstractlterableAssertTest.java)

Structure: The structure of these 2 tests is basic anatomy of a test (setup — test —
verify). It uses JUnit as well.
Technique: The technique is simple black-box testing that tests one functionality for

each method. | also

https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/api/AbstractIterableAssert.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/api/AbstractIterableAssert.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/AbstractIterableAssertTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/AbstractIterableAssertTest.java

Why: This is a good test because it tests 2 high-level iterable operations that users rely
on daily. It also proves positive and safe behavior while using assertj’s fluent assertions.

Here are the pictures of the tests passing and evidence of running it through Maven

Al assertj v P AbstractlterableAssertTestNL.sho...ondition v

package
import
import ja

import

public c

name -> name.s

result.contains

Abstractlteral 433 ms Tests passed: 1 Performance
shouldFilt

«<it.ConfigurationForTe

tionEna

jEnabled

Al assertj v §9 add-test-cases v AbstractlterableAssertTestNL.sho...Elements v

AbstractiterableAssert.java AbstractiterableAssert

AbstractIterableAssertTestNL {
edOnCondition() {

ListAssert<String> result = assertThat(names).filteredOn(name -> name.startsWith(

result.containsExactly(

List<String> names = List.of(

assertThat(names) .doesNotContainNull();

b

AbstractlterableAssertTestNL.shouldNotContainNullElem...

¢8 v @ ® Q
Abstractlterat Tests passed: 1 Emrorane

shouldNot 315 ms Applying configuration org.assertj.core.testkit.ConfigurationForTests

representation 5 StandardRepresentation
comparingPrivateFieldsEnabled scoo 5 true
extractingPrivateFieldsEnabled coco co true
bareNamePropertyExtractionEnabled ... coco co true
lenientDateParsingEnabled false

additional date formats [1

test > java > org >

Al assertj v {9 add-test-cases v Current File v

ssertTes

publi lass AbstractIterableAssertTest {
void shouldNotContainNullElements() {

List<String> names = List.of(

assertThat(names).doesNotContainNull();

Terminal Local + v

testng. , org.junit. and org.opentesté4j.
, Failures: 8, Errors: 8, Skipped: 0, Time elapsed: 0.188 s -- in org.assertj.core.api.

Results:

Total time: 27.156 s
Finished at: 2025-03-29T16:41:41-04:00

[
[
[
[
[
[
[
[
[
[
[
[

PS C:\Users\nmlav\assertj\assertj-core> I

© e

Commit:
After the tests passed, | committed it to the repository:

-.tj
$ git status
ch add-test-cases
branch is up to date with 'origin/add-test-cases'

Changes to be committed:
L]

(use "git restore --staged <file>...'

to unstage)

- commit:
" . . |
g to update what will be committed)
(use " i i

Unit test f

] wdded Junit test for

Commit 580dde6

@ Nicklavitt committed 13

Added Junit test for AbstractIterableAssert

Link for this commit;

i/AbstractIt

1t

<) Browse files

580ddes ()

https://qithub.com/ST-Spring-25/assertj/pull/1/commits/580dd06fcb2e8a763b4981ccc04

efc58f36fd4 3f

https://github.com/ST-Spring-25/assertj/pull/1/commits/580dd06fcb2e8a763b4981ccc04efc58f36fd43f
https://github.com/ST-Spring-25/assertj/pull/1/commits/580dd06fcb2e8a763b4981ccc04efc58f36fd43f

Test Case #2
What is the class and method | am testing:
File: Strings.java
- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/jav

a/org/assertj/core/util/Strings.java

- (~/assertj/assert-core/src/main/java/org/assertj/core/util/Strings.java)
Class: The Strings class is a utility class that provides helper methods that are used
with strings. It helps with formatting strings, normalizing whitespaces, and checking if a
string is empty or null. These methods help make assertions simpler in testing
frameworks and allow for reusable logic related to strings.
Method: The method | am testing isNullOrEmpty(), which is a method that is used to
check if a string is empty or null. My test will focus on making sure it behaves correctly
for 3 possible inputs.

What is the test:

Eile: StringEmptyOrNullTest.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java

Jorg/assertj/core/util/StringEmptyOrNull Test.java

- (~\assertj\assertj-core\src\test\java\org\assertj\core\uti\StringEmptyOrNull Test.java)
Structure: The structure of these 2 tests is basic anatomy of a test (setup — test —
verify). It uses JUnit as well.

Technique: The technique | used is equivalence partitioning. Partition 1 is null, partition

2 is an empty string, and partition 3 is any non-empty string.

https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/util/Strings.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/util/Strings.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/util/StringEmptyOrNullTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/util/StringEmptyOrNullTest.java

Why: These are good tests because it is complete but minimal with easy readability. It is

also fast and tests good functionality.

Here are the pictures of the tests and evidence of running it through Maven

sertj.core.util;

junit.jupiter.api.Assertions.*;
upiter.api

public ¢ StringEmptyOrNullTest {

id returnTruelfStri

String input = null;

boolean r

StringEmptyOr 27 ms Tests passed: 1

returnTruelf

finished with it code ©

void returnTruelfStringl

rtTrue(res

void returnTruelfStringIskE

String input =

n result = Stri i mpty(input);

rtTrue(result);

v Q@
StringEmptyOr 28 ms Tests passed: 1

returnTruelf

finished with exit code 0

StringEmptyOrNullTest.java

public StringEmptyOrNullTest {
< ;

StringEmptyO

returnFalse

s finished with exit c

public c ringEmpty0OrNullTes

void returnTru

ertTrue(result);

id returnFalsel

String innut =
Terminal Local Tr

Te L run in random ord
Using auto detected prov

Running org.assertj.core.util

ailures: Errors: 3 : 5 -- in org.assertj.core.util.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Commit:

After the tests passed, | committed it to the repository

03) MINGW64:/c/Users/nmlav/assertj

rtj

origin/add-test-cases

he commi tted)
s in worki

sertj-core / j rg/ass re/uti ringemptyorNullTest.j
ALF the next time Git

" Strings

yOrNullTest.j

Writing
Total 11
remote:

Commit dbfc348 &) Browse files
@ Nicklavit

Added test for Strings

P adad ST-Sp ert] 580dde6

Here is the link to the commit:

https://github.com/Nicklavi11/assertj/commit/dbfc34859a6785b740819a42422¢c5613c14

8e2ed

https://github.com/Nicklavi11/assertj/commit/dbfc34859a6785b740819a42422c5613c148e2ed
https://github.com/Nicklavi11/assertj/commit/dbfc34859a6785b740819a42422c5613c148e2ed

Test Case #3
What is the class and method | am testing:
File: NumberAssert.java

- https://qithub.com/ST-Spring-25/assertj/blob/main/assertj-core/src/main/java/ora/

assertj/core/api/NumberAssert.java

- (~assertj/assertj-core/src/main/java/org/assertj/core/api/NumberAssert.java)
Class: NumberAssert is a class that is for all numeric types, such as Integer, Long,
Float, etc, and it adds readable methods such as isPositive(), isZero(), and isBetween(),
which verify numeric ranges while generating clear failure messages.
Method: The method | am testing is isBetween(start, end), and it passes when start <=
actual <= end and fails otherwise. It is inclusive on both ends and throws an
AssertionError with a descriptive message when the actual value is out of range.

What is the test:

File: NumberRangeTest.java

- https://github.com/Nicklavi1l/assertj/blob/add-test-cases/assertj-core/src/test/java

[org/assertj/core/api/NumberRangeTest.java

- (~/assertj/assertj-core/src/test/java/org/assertj/core/api/NumberRangeTest.java)
Structure: The structure of these tests is basic anatomy of a test. It also uses JUnit.
Technique: The testing technique is boundary value testing (min, min + 1, typical, max -
1, max). | am testing between numbers 1 and 100. Input for min is 1, min + 1 is 2,
typical is 50, max - 1 is 99, and max is 100.
Why: This is a great candidate for Boundary tests because it can test critical points and

catch errors one by one. It uses assertj’s assertion so intent and failure messages are

https://github.com/ST-Spring-25/assertj/blob/main/assertj-core/src/main/java/org/assertj/core/api/NumberAssert.java
https://github.com/ST-Spring-25/assertj/blob/main/assertj-core/src/main/java/org/assertj/core/api/NumberAssert.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/NumberRangeTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/NumberRangeTest.java

clear, and each case is independent, so there is no randomness. It gives full confidence
in isBetween for integer input without over-testing inputs.

Here are the pictures of the tests and evidence of running it through Maven

age org.assertj.core.api;

import org.junit.jupiter.api.

-

import s Cc org 2rtj.core.api.A

public class NumberRangeTest {

void testTypicalN

int number =

hat(number) .isBetween(1,

NumberRangeTest.testTypicalNumber

NumberRange 355 ms Tests passed: 1

testTypica

; NumberRangeTest {

void testMinN er(){

int number =

I

ertThat (number) .isBetween(1,

NumberRange 310 ms

testMinNuw

NumberRangeTest {

int number =

rtThat(number).isBetween(

r

NumberRangeTest.testMinPlusOneNumber

NumberRange 311 ms

testMinPlu:

void

int number =

rtThat(number) .isBetween(

I

NumberRange 315 ms

testMaxNu

1t number

sertThat(number) .isBetween(

NumberRange 3

testMaxMNu

Terminal Local

1 Running org

configuration or

tandardRepresentation
true
= true

true
dditional

engthFo 2 5 80
1000

riptionConsumer . . .
FromStackTraceEnabled =
ception

Skipped:

ed at: 2025-04-01T2 :55-04:00

and

or

Commit:

After the tests passed, | committed it to the repository

to un

t will be committed)
d chang in working directory)

/NumberRangeTest a", LF will be replaced by CRLF the next time Git touches it

Commit b83f598 &) Browse files

. Nicklavil1 con

added test for NumberAssert.java

P ST-Spring-2 1 parent dbfc348 cor

Here is the link to the commit:

https://qgithub.com/ST-Spring-25/assertj/commit/b83f5987744687cca825e3ebee3eacf8d

9477c40

https://github.com/ST-Spring-25/assertj/commit/b83f5987744687cca825e3ebee3eacf8d9477c40
https://github.com/ST-Spring-25/assertj/commit/b83f5987744687cca825e3ebee3eacf8d9477c40

Test Case #4
What is the class and method | am testing:

File: AbstractCharSequenceAssert.java

- https://github.com/Nicklavi11/assertj/blob/main/assertj-core/src/main/java/org/ass

ertj/core/api/AbstractCharSequenceAssert.java

- (~/assertj/assertj-core/src/main/java/org/assertj/core/api/AbstractCharSequenceAssert.java)
Class: The AbstractCharSequenceAssert is a base class that powers assertj assertion
for charSequence types. It has high-level text that checks and returns SELF for good
chaining.

Method: The method | am testing is isNotBlank(), which is only successful when the
actual value is not null, not empty, and has at least one non-whitespace character. If it is
not successful, it throws an AssertionError with a meaningful message.

What is the test:

ile: StringValidationTest.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java

[org/assertj/core/api/StringValidationTest.java

- (~/assertj/assertj-core/src/test/java/org/assertj/core/api/StringValidationTest.java)
Structure: The test structure is the anatomy of a test. It also uses JUnit and the
@Disabled annotation to make sure the Maven build is successful. The tests are
designed to fail and use assertThatThrownBy for checking it correctly, which is
successful for this test.

Technique: The technique for these tests is Equivalence Partitioning.

https://github.com/Nicklavi11/assertj/blob/main/assertj-core/src/main/java/org/assertj/core/api/AbstractCharSequenceAssert.java
https://github.com/Nicklavi11/assertj/blob/main/assertj-core/src/main/java/org/assertj/core/api/AbstractCharSequenceAssert.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/StringValidationTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/StringValidationTest.java

Why: These tests are good because they trigger every internal branch, such as valid,
empty, whitespace, and null. It is also very readable, and it has failure-expected tests
that are present but are disabled, so it does not break the build.

Here are the pictures of the tests and evidence of running through Maven. The tests are
captured before the @Disabled annotation, and it fails through Maven, which is

evidence of success in this test:

1Stri I::5(-] -1I

) .isNotBlank();
) .isNotBlank();
).isNotBlank();
).isNotBlank();

StringValidationTest.shouldPassForValidString

v o =W

StringValidati 384 ms Tests passed: 1

shouldPas

dationTest.java

StringValidationTest.shouldFailForEmptyString
G G ¢ v @ T ¥

v € StringValidatit 301 ms Q

— s -0 . . -
@ shouldFaill descriptionConsumer

public class StringValidationTest {

@Test

public void

sertThat ().isNotBlank();

StringValidationTest.shouldFailForWhitespaceString

G (B 2@ = v
|

v @ StringValidati 576 ms @
& shouldFail

public class StringValidationTest {

@Test

public void

String nullString = null;

assertThat(nullString).1i

ol
(e

v €) StringValidati 285 ms
€ shouldFail

1 add-.. v

Terminal Local -r

]
] Results:
]

]

]

] Total time: 37.517 s
] Finished at: 2025-04-02T14:12:27-04:00

] Failed to execute goal
(default-test) on project
]

Commit:

After the tests passed (with the @Disabled annotation), | committed it to the repository

d-test-cases’.

" to unstage)

commi tted)
in working directory

tringvalidationTest.j , LF will be replaced by CRLF the next time Git touches it

Commit 2f6fc24 <9 Browse files

@ Nicdavitt o

added test for AbstractcharSequenceAssert.java

P ST-5 5 et 1 parent b83f598 t 2f6fc24 (0

Here is the link to the commit:

https://github.com/ST-Spring-25/assertj/commit/2f6fc249846d916be63b50dee93f92483f

f977ba

https://github.com/ST-Spring-25/assertj/commit/2f6fc249846d916be63b50dee93f92483ff977ba
https://github.com/ST-Spring-25/assertj/commit/2f6fc249846d916be63b50dee93f92483ff977ba

Test Case #5
What is the class and method | am testing:
File: Lists.java
- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/jav

a/org/assertj/core/util/Lists.java

- (~/assertj/assertj-core/src/main/java/org/assertj/core/util/Lists.java)
Class: The Lists class is a small helper class in assertj that offers methods for ArrayList
creation.
Method: The method | am testing is newArrayList(T... elements), which creates new
ArrayLists. It returns an empty ArrayList when no arguments are there or a list with
pre-populated elements that are provided in the correct order.
What is the test:

ile: ListsTest.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java

[org/assertj/core/util/ListsTest.java

- (~/assertj/assertj-core/src/test/javalorg/assertj/core/util/ListsTest.java)
Structure: The structure is the basic anatomy of a test. It also uses JUnit.
Technique: The technique is Equivalence Partitioning. Partition 1 is 0 arguments,
partition 2 is exactly 1 argument, and partition 3 is 2 or more arguments.
Why: These tests work because they cover all logical paths with only 3 tests and ensure
both size and content correctness. It uses the helper to check these tests, and if it

returns null, it immediately fails these tests and protects calls in assertJ.

https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/util/Lists.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/util/Lists.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/util/ListsTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/util/ListsTest.java

Here are the pictures of the tests and evidence of running through Maven:

rtNotNull(emptylList);

rtTru mptyList.isEmpty

ListsTest.testNewEmptyList

ListsTest (org.a: 21ms

testNewEmp

finished with exit code 0

lementlList() {

singleElementlis
, SingleElementL

, singleElementlList.get(0));

ListsTest.testSingleElementList

ListsTest 20ms Tests passed: 1

testSingleEle

s finished with exit code ©

0 A1
ring> multipleElementslist = Lists.newArraylis

, multipleElements

, multipleElementsList.

, multipleElementslList.get(1)

, multipleElementslList.get(2))

ListsTest 24 ms

testMultipleE

Proc finished with exit code 0O

sertj.core.util.
, Failures: O, Errors: 0, Skipped: 0, Time elapsed: 0.0 s -- 1in org.assertj.core.util.

Commit:

After the tests passed, | committed it to the repository

03) MINGWe4:/c/Users/nmlav/assertj

it add .
ing: in the wurkiﬂg copy of '.ﬁﬁ "tj-core/src/test/ - sertj/core/uti
JListsTest.java', LF will be rep Git touches it

L, git commit -m

[add-test-cases l" 0

1 file changed insertmnr
create mode 1 assertj-cor
ava

Enumer4t1nq ob
Emuntinq '

., pack 1)
ompleted with 4 TquT objects.
rtj.git
d-test-cases -> add-test-cases

cert]

Commit 12653c3 &) Browse files

@ Nicklavitl committed 1

Added Junit test for Lists.java

Here is the link to the commit:

https://qgithub.com/ST-Spring-25/assertj/commit/12653c350b12e00fe1e46b44e78ed95e

95d51d91

https://github.com/ST-Spring-25/assertj/commit/12653c350b12e00fe1e46b44e78ed95e95d51d91
https://github.com/ST-Spring-25/assertj/commit/12653c350b12e00fe1e46b44e78ed95e95d51d91

Test Case #6
What is the class and method | am testing:
File: Condition.java
- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/jav

a/org/assertj/core/api/Condition.java

- (~/assertj/assertj-core/src/main/java/org/assertj/core/api/Condition.java)
Class: The Condition class is used to define custom conditions for assertions.
Method: The Method | am testing is a subclass, and its functionality is to return true if
the value satisfies the condition and false when it doesn't.
What is the test:
File: ConditionTest.java

- https://qgithub.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java

[lorg/assertj/core/api/ConditionTest.java
- (~/assertj/assertj-core/src/test/java/org/assertj/core/api/ConditionTest.java)

Structure: The structure of the test is mock-based, and it uses Mockito.

Technique: The technique is Mock testing. It replaces the Condition with a mock, and
explicitly controls its matched return value, and verifies the method is used with the
expected argument.

Why: This test works because it uses a Condition to make sure the external code can
rely on the interaction. It shows both positive and negative branches with simplicity. It is
fast, deterministic, and does not need external resources, which is good for tests.

Here are the pictures of the tests and evidence of running through Maven:

https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/api/Condition.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/api/Condition.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/ConditionTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/ConditionTest.java

>onditionTest {

id ret [] itionI

Conditior t n ondition = k(Condition.

)) .thenReturn(

Conditior 1sec 300 ms
return’

Applying configuration or ertj.core.t t.ConfigurationForTests

onditionTest {

ondition.
)).thenReturn(

ConditionTest 698 ms

returnFalse

onfigurationForT

Terminal

[] Running ol
Applying c

andardRepresentation

mptionException .. 2000 CT(try in order org.testng , org.junit and org.opentest4j.

, Failures: 8, Err kipped: ©, 0.548 s -- in org.assertj.core.api.

Commit:

After the tests passed, | committed it to the repository

it add
ning: in the ‘assertj-cor /tes g sertj/cor nditionTest. j , LF will be replaced by CRLF the next time Git touches it

it commit -m

nditionTest. ja

Commit f44931f &) Browse files

P oad SiESETnD z 3 © f44931F (O]

Here is the link to the commit:

https://qgithub.com/ST-Spring-25/assertj/commit/f44931f6a0275f9c0c1f750aa369fd5296

bcca88

https://github.com/ST-Spring-25/assertj/commit/f44931f6a0275f9c0c1f750aa369fd5296bcca88
https://github.com/ST-Spring-25/assertj/commit/f44931f6a0275f9c0c1f750aa369fd5296bcca88

Commons-text:
Apache Commons Text is a Java library that gives developers utilities for working with
and manipulating strings. This improves the Java String class by giving it more flexibility,
and it is a part of other Apache Commons libraries. Commons text focuses on advanced
string operations, and its features are string similarity metrics, random string generators,
escaping/unescaping, string substitution, etc. This is a great candidate for creating tests
because it has great utility classes with clear input and output, and it also supports

many black-box testing techniques.

Here is the link for the pull request made for commons-text:

https://qithub.com/ST-Spring-25/commons-text/pull/3

https://github.com/ST-Spring-25/commons-text/pull/3

Test Case #7
What is the class and method | am testing:
File: WordUftils.java

- https://qithub.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/java/or

g/apache/commons/text/WordUtils.java

- (~/commons-text/src/main/java/org/apache/commons/text/WordUftils.java)
Class: The WordUtils class has utility methods that have several different operations in
strings.
Method: The capitalize(String str) method takes the input string and capitalizes the first
character of each word. It returns the converted uppercase words, and if the input is
null, it returns null. If it is empty, it returns an empty string. The method does not change
any whitespace and the case of other characters.

What is the test:

File: CapitalizeTest.java

- https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/

apache/commons/text/Capitalize Test.java

- (~/commons-text/src/test/java/org/apache/commons/text/Capitalize Test.java)
Structure: | have made 8 different test cases that cover a variety of different types of
inputs. It also uses JUnit.
Technique: The technique used is Equivalence Partitioning. It tests inputs that represent
categories of behavior, such as valid simple inputs, null, empty string, mixed or complex

formatting, to see how the method behaves around several different input types.

https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/java/org/apache/commons/text/WordUtils.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/java/org/apache/commons/text/WordUtils.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/CapitalizeTest.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/CapitalizeTest.java

Why: These are good tests because they cover a variety of major use cases in the
method. It checks many common input types while also checking boundary and edge
cases. Each test is very simple, clear, and fast to run, which makes them good test

cases to make sure the method in this class works properly.

Here are the pictures of the tests passing and evidence of running it through Maven

, WordUtils.capitalize(

, WordUtils.capitalize(

, WordUtils.capitalize(

void testMul

CapitalizeTest

v @ 5

CapitalizeTest 46 ms Tests passed: 8

CaseUtilsTest.java
public class CapitalizeTest {
@Test

void testMultipleLowercaseWords() {

assertEquals(He 1d", WordUtils.capitalize(

@Test
void testWhitespaceAroundWord() {
assertEquals(Hell L , WordUtils.capitalize(

assertEquals(1 Ld", WordUtils.capitalize(

@Test
void testNumberWithWord() {

assertEquals(Hello 123", WordUtils.capitalize(

@Test
void testNullWord() {
assertNull(WordUtils.capitalize(null));

CapitalizeTest

Terminal Local

Running org.apache.commons.text.CapitalizeTest
, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.106 s -- in org.apache.commons.text.CapitalizeTest

Results:

Total time: 6.842 s

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
1 Finished at: 2025-04-108T19:57:31-04:00

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

PS C:\Users\nmlav\common-text> I

Commit:

After the tests passed, | committed it to the repository:

$ git add

nmon-text
b git commit -m "Added ivalence Partitioning test for Wordutils.j
[add-test-cases 2c6 dded Equivalence Partitioning test for Wc
1 file changed 2 insertions(+)
create mode 10 4 src/test/

$ git push origin
HEAD
add-test-cases

$ git push origin add-test-cases
Enumerating objects

Counting objects: 100% /18), done.

Delta compress y threads
Compressing J 5
Writi bjects: 0/1(L4 iB | 1.48 MiB/s, done.
Total 10 (delta d 0 (c ., pack-reused from
remote: solv 1S : /3), completed with 3 Tocal objects.
(ons-text.git
-> add-test-cases

Commit c8432c6 & Browse files

@ Nicklavitl committed 1 hour ago

Added Equivalence Partitioning test for Wordutils.java

1 parent 8871361 commit c8432c6 (L)

Link for this commit:

https://github.com/ST-Spring-25/commons-text/pull/3/commits/c8432c69c0408b6e0abd

4f3874431f9690129874

https://github.com/ST-Spring-25/commons-text/pull/3/commits/c8432c69c0408b6e0abd4f3874431f969b129874
https://github.com/ST-Spring-25/commons-text/pull/3/commits/c8432c69c0408b6e0abd4f3874431f969b129874

Test Case #8
What is the class and method | am testing:
File: JaroWinklerDistance.java

- https://qithub.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/javalor

g/apache/commons/text/similarity/JaroWinklerDistance.java

- (~/commons-text/src/main/java/org/apache/commons/text/similarity/JaroWinklerDistance.java)
Class: The JaroWinklerDistance class provides an implementation of the Jaro-Winkler
distance algorithm. This algorithm measures the similarity between two character
sequences. It applies a distance to the measurement; a 1.0 is not similar at all, and 0.0
is perfectly similar.

Method: The method | am testing is apply(CharSequence left, CharSequence right). It
returns a Double representing how different the 2 strings are and throws an
lllegalArgumentException if one of the inputs is null. This method is useful for checking
the spelling of words, and it measures the distance between strings.

What is the test:
File: JaroWinklerDistanceScoreTest.java

- https://qgithub.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/

apache/commons/text/similarity/JaroWinklerDistanceScoreTest.java

- (~/commons-text/src/test/javalorg/apache/commons/text/similarity/JaroWinklerDistanceScore Test java)
Structure: The structure of the test uses a common test case, which is the word “hello”.
This keeps the testing consistent with a similar case for each test. It also uses JUnit.
Technique: The technique used is Boundary Value testing, which covers both ends of
the score range and a typical case in between. The min is a perfect match (0.0), the

min+1 is a slightly different match (greater than 0.0, less than 0.1), the typical is a

https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/java/org/apache/commons/text/similarity/JaroWinklerDistance.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/java/org/apache/commons/text/similarity/JaroWinklerDistance.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/similarity/JaroWinklerDistanceScoreTest.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/similarity/JaroWinklerDistanceScoreTest.java

moderate similarity (greater than 0.1, less than 0.5), and max-1 is an almost completely
different match (greater than 0.5, less than 1.0), and the max is a completely different
match(1.0). | rounded each score to the nearest hundredth, and | double checked this
algorithm with an online Jaro-Winkler distance calculator (Link to website:
https://tilores.io/jaro-winkler-distance-algorithm-online-tool).

Why: This is a good test because it covers the full range of behavior for the method and
tests exact matches, partial similarity, and completely different cases. It uses readable
and clear assertions with measurable ranges, and the tests are double checks with an
outside source to confirm that the tests are valid.

Here are the pictures of the tests passing and evidence of running it through Maven

est.java E nklerDistz EVE RandomStringC

import static org.junit.jupiter.api.Assertions.x*;
JaroWinklerDistanceScoreTest {

tic JaroWinklerDistance distance;

ance.apply(

&& actual <

v @

JaroWinklerDi 31 ms Tests passed: 5
slightlyPer
perfectMatc

completeDil Process finished with exit code 0

https://tilores.io/jaro-winkler-distance-algorithm-online-tool

aroWinklerD

apply(

actual > && actual

actual

completeDil
mediumMat

slightlyCom

finished with t code O

y.JaroWinklerDistanceScoreTest
ipped: 0, Time psed: 0.075 s -- in org.apache.commons.t similarity.JaroWinklerDistanceScoreTest

Commit:

After the tests passed, | committed it to the repository:

$ git status
wdd-test-cases
0 0 - commit:

e what will be committed)
discard changes in wo

no changes added to commit (use "git add"” and "git commit -
$ git add .

it commit -m "Added bound]
-test-cases 5lacle87] Added boundary test for 3 ink tance. java
1 file changed, 62 insertions(+)

done.
threads

add-test-cases

Commit 5lacle8 &) Browse files

@ Nicklavit committed 3 mi
Added boundary test for JaroWinklerDistance.java

i

Link for this commit:

https://github.com/ST-Spring-25/commons-text/pull/3/commits/51ac1e874a2b972c46e2

9aac0bcd47d89b56c047

https://github.com/ST-Spring-25/commons-text/pull/3/commits/51ac1e874a2b972c46e29aac0bcd47d89b56c047
https://github.com/ST-Spring-25/commons-text/pull/3/commits/51ac1e874a2b972c46e29aac0bcd47d89b56c047

Test Case #9
What is the class and method | am testing:
File: RandomStringGenerator.java

- https://qithub.com/Nicklavi11/commons-text/blob/master/src/main/java/org/apach

e/commons/text/RandomStringGenerator.java

- (~/commons-text/src/main/java/org/apache/commons/text/RandomStringGenerator.java)
Class: The RandomStringGenerator class is a utility class that is used to generate
random strings composed of characters from a specified range. It is a useful class in
testing, password creation, data generation, and several other scenarios where random
character sequences are needed.

Method: The method | am testing is generate(int length), which creates a random string
based on the given length in the input using the character rand defined in the
generator’s builder. In this test, the generator that was built uses characters from ‘a’ to
‘a’, and the method is supposed to return a string of 10 lowercase letters.

What is the test:
File: RandomStringGenerateTest.java

- https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/

apache/commons/text/RandomStringGenerateTest.java

- (~/commons-text/src/test/java/org/apache/commons/text/RandomStringGenerateTest.java)
Structure: The structure of the test is to generate a random string with any lowercase
letter of length 10. It uses the anatomy of a test, and it checks if it is null and that the

length is correct. It uses JUnit as well.

https://github.com/Nicklavi11/commons-text/blob/master/src/main/java/org/apache/commons/text/RandomStringGenerator.java
https://github.com/Nicklavi11/commons-text/blob/master/src/main/java/org/apache/commons/text/RandomStringGenerator.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/RandomStringGenerateTest.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/RandomStringGenerateTest.java

Technigue: The technique used is black-box functional testing. It focuses on the output
and makes sure that it is not null and exactly the given length (10 characters). It does
not check how the string is built, which is normal for testing random behavior.

Why: This is a good test because it checks the generate() method for its proper length
and makes sure it is not null. It also makes sure the random string was built correctly in
the given range. It has clear and fast assertions, and is also easy to read, which is great
for automated testing.

Here are the pictures of the tests passing and evidence of running it through Maven

Assertions.x;

RandomStringGenerator generator = new RandomStringGenerator.Builder().withinRange('a', 'z').build();

String random = generator.generate(

, random.length());

RandomStringG 26 ms Tests passed: 1

returnString\

Process finished with exit code ©

Terminal Local + v

| coo (default-test) @
Using auto detected provider org.apache.maven.surefire.junitplatform.JUnitPlatformProvider

RandomStringGenerateTest
s: 0, Skipped: 0, Time elapsed: 0.063 s -- in org.apache.commons.text.RandomStringGenerateTest

1
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1
1

Commit:
After the tests passed, | committed it to the repository:

03) MINGW64:/c/Users/nmlav/commons-text

b git add src/test/jav / ons/ andomStringGenerateTest. java

b git status

e "git restore --staged <file>..." to unstage)

hanges not sta
add .." to update what will be committed)

reste . (changes in working direct:

wdd-test-cases ele8ld5al] Added Junit
2 files cha d, 41 inserti

ache/ ons/text/RandomStringGenerateTest. j
iche/commons /text/simila

numera
ounting obj
yelta compre

., pack-reused
mpleted with 4 To
text.git
test-cases

Commit ele81d5 & Browse files

@ Nicklavitt committed 2 m
Added Junit test for RandomStringGenerator.java

O 1 parent c8432ct it ele8lds (CJ

Link for this commit:

https://github.com/ST-Spring-25/commons-text/pull/3/commits/e1e81d5aaf97e05b8e928

28f4bba69a97b1fd9ae

https://github.com/ST-Spring-25/commons-text/pull/3/commits/e1e81d5aaf97e05b8e92828f4bba69a97b1fd9ae
https://github.com/ST-Spring-25/commons-text/pull/3/commits/e1e81d5aaf97e05b8e92828f4bba69a97b1fd9ae

Test Case #10
What is the class and method | am testing:
File: StringEscapeUtils.java
- https://github.com/ST-Spring-25/commons-text/blob/master/src/main/java/org/apa

che/commons/text/StringEscapeUtils.java

- (~/commons-text/src/main/java/org/apache/commons/text/StringEscapeUtils.java)
Class: The StringEscapeUtils class is a utility class that has methods to escape and
unescape strings for many different contexts, such as Java, HTML, XML, and JSON.
These methods are helpful when dealing with strings that have special characters that
need to be encoded safely.
Method: The method | am testing is escapeJava(String str). This method escapes
special characters, so it is safe to have in Java source code. So if there is a (“) it
becomes a (\”), and a backslash (\) becomes (\\).

What is the test:

Eile: StringEscapeUtilsTopDownTest.java

- https://qithub.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/javal/ora/

apache/commons/text/StringEscapeUtilsTopDownTest.java

- (~/lcommons-text/src/test/java/org/apache/commons/text/StringEscapeUtilsTopDownTest.java)

Structure: The structure of this test takes the input of a string that has a double quote
and has an expected output that it verifies with the same quote but escapes. It uses
JUnit as well.

Technique: The technique it uses is top-down testing. It takes a high-level method with

an input that is known and compares the result against the known correct output. This

https://github.com/ST-Spring-25/commons-text/blob/master/src/main/java/org/apache/commons/text/StringEscapeUtils.java
https://github.com/ST-Spring-25/commons-text/blob/master/src/main/java/org/apache/commons/text/StringEscapeUtils.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/StringEscapeUtilsTopDownTest.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/StringEscapeUtilsTopDownTest.java

test does not check how escaping is implemented, but it confirms the behavior is
correct.

Why: This is a good test because it targets a high-level utility function that is commonly
used in Java code generation, and it has a realistic and easy-to-understand example
that has special characters. It checks and verifies if it is correct, and the format of the
outpu,t and it is short, readable, and very self-contained.

Here are the pictures of the tests passing and evidence of running it through Maven

c org.junit.jupiter.api.Assertions.x%;

ss StringEscapeUtilsTopDownTest {

String input

String expected =

String actual = StringEscapeUtils.e Java(input);

2rtEquals(expected, actual);

v @ =

StringEscapeUt 40 ms Tests passed: 1

shouldEscag

Process finished with exit code 0

.StringEscapeUtilsTopDownTest

0, Skipped: O, Time elapsed: 0.125 s -- in org.apache.commons.text.StringEscapeUtilsTopDownTest

Total time:
Finished at:

Commit:

After the tests passed, | committed it to the repository:

$ git add

\3 u1t commit -m

done.
threads
done.

B | 1.41 mi
0), pack-reused
p]eted with

Commit d6717b1 &9 Browse files

. Nicklavill committed 1 minute ago
Added TopDown Test for StringEscapeUtils.java

Slacle8 commit d6717b1 L]

Link for this commit:

https://qgithub.com/ST-Spring-25/commons-text/pull/3/commits/d6717b1ab6c3fc9146¢c95

abd9aabc17a0f4df01f

https://github.com/ST-Spring-25/commons-text/pull/3/commits/d6717b1ab6c3fc9146c95abd9aa5c17a0f4df01f
https://github.com/ST-Spring-25/commons-text/pull/3/commits/d6717b1ab6c3fc9146c95abd9aa5c17a0f4df01f

Group contribution:
| have met with my group several times. My group members are Prabhjot Kaur,
Alexander Leali, and Robert Ventura. Each week since this project has been released,
we have met through Discord and in class meetings to discuss where we are while
working on this project. | have been given a ton of help from Prabhjot Kaur as she has
helped me format and create my project report while helping me navigate through many
of the projects and find testable methods. Alexander Leali helped me with making my
tests better and answered many of my questions that | have had. All of my group
members have talked and discussed our report and compared and contrasted them, as
well as helped each other find where to get testable methods in many different classes
and what are the best open-source projects to test. | helped everyone with many
different things such as helping her add required items to make the report better like
adding direct links to pull requests and commits while also teaching everyone how to
make the pull requests. These weekly group meetings have helped me make my report

amazing, and they have been very vital to creating this project report.

Conclusion
This project has helped me understand how to create real, meaningful test cases for
open-source Java libraries. | have learned a lot about reading and analyzing different
open-source projects and understanding what real code bases look like, and how | can
apply my skills to these. It has also shown me how to navigate and use GitHub better,
which is a vital skill that | can forever use. Throughout this project, | have gained a very

deep understanding of how to target specific behavior in different classes and methods.

In this project, | have made 10 different test cases, 6 in assertj and 4 in commons-text,
and | have used several different testing techniques, such as equivalence partitioning,
boundary value testing, mock testing, black-box testing, and top-down testing, which
have demonstrated what | have learned throughout this course. | have also practiced
with GitHub and worked with forks, branches, commits, and pull requests while verifying

each of my tests in Maven.

