
Nicholas Laviano

Software Engineering Project

SE 4560

Introduction

The goal of this project is to create 10 practical and meaningful test cases that

demonstrate different testing techniques learned in class and can be used on real

open-source codebases. I selected two different open-source projects to test: assertJ

and commons-text. These projects offer clear helper classes with different logic that are

worth testing.

For each project, I forked it from the forked ST-Spring-25, which creates a copy of the

forked repository onto my personal repository. I also created a branch for each project

called “add-test-cases” and I committed each test to the branch. These tests use

different testing techniques and target different logical behaviors in each project.

I use Maven to ensure each test passes or acts as it should, to ensure that the tests are

properly made, and to test what is needed. I created a pull request for each branch on

their project. Lastly, I will summarize my group and I’s weekly check-ins and share the

help I gave as well as the help that I got.

 Description of assertj

For my first 6 test cases, I am testing different methods in assertJ. assertJ is a

fluent-assertion library for Java tests that replaces the traditional assertEquals checks

with better readable and chainable assertions. It provides many features that allow

developers to make code clearer and more maintainable while it finds errors and

provides informative feedback. Different features that assertj provides are helpful failure

messages, fluent API, type-specific assertions, and no external runner needed.

Here is the link for the pull request made for assertj:

https://github.com/ST-Spring-25/assertj/pull/1

https://github.com/ST-Spring-25/assertj/pull/1

Test Case #1:

What is the class and method I am testing:

File: AbstractIterableAssert.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/jav

a/org/assertj/core/api/AbstractIterableAssert.java

- (~\assertj\assertj-core\src\main\java\org\assertj\core\api\AbstractIterableAssert.java)

Class: The AbstractIterableAssert class is a base assertion class for all iterable types in

assertj

Methods: The methods I am testing are filteredOn(Predicate<E>) and

doesNotContainNull(). The purpose of filteredOn(Predicate<E>) is to return a new

assertion object containing only elements that match the predicate. My test will focus on

filtering a list of names with a given letter, and checking if the name results with the

given letter. The purpose of doesNotContainNull() is that it will fail if any element in the

iterable is null. My test will focus on asserting a list with no null values.

What is the test:

File: AbstractIterableAssertTest.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java

/org/assertj/core/api/AbstractIterableAssertTest.java

- (~\assertj\assertj-core\src\test\java\org\assertj\core\api\AbstractIterableAssertTest.java)

Structure: The structure of these 2 tests is basic anatomy of a test (setup → test →

verify). It uses JUnit as well.

Technique: The technique is simple black-box testing that tests one functionality for

each method. I also

https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/api/AbstractIterableAssert.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/api/AbstractIterableAssert.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/AbstractIterableAssertTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/AbstractIterableAssertTest.java

Why: This is a good test because it tests 2 high-level iterable operations that users rely

on daily. It also proves positive and safe behavior while using assertj’s fluent assertions.

Here are the pictures of the tests passing and evidence of running it through Maven

Commit:

After the tests passed, I committed it to the repository:

Link for this commit:

https://github.com/ST-Spring-25/assertj/pull/1/commits/580dd06fcb2e8a763b4981ccc04

efc58f36fd43f

https://github.com/ST-Spring-25/assertj/pull/1/commits/580dd06fcb2e8a763b4981ccc04efc58f36fd43f
https://github.com/ST-Spring-25/assertj/pull/1/commits/580dd06fcb2e8a763b4981ccc04efc58f36fd43f

Test Case #2

What is the class and method I am testing:

File: Strings.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/jav

a/org/assertj/core/util/Strings.java

- (~/assertj/assert-core/src/main/java/org/assertj/core/util/Strings.java)

Class: The Strings class is a utility class that provides helper methods that are used

with strings. It helps with formatting strings, normalizing whitespaces, and checking if a

string is empty or null. These methods help make assertions simpler in testing

frameworks and allow for reusable logic related to strings.

Method: The method I am testing isNullOrEmpty(), which is a method that is used to

check if a string is empty or null. My test will focus on making sure it behaves correctly

for 3 possible inputs.

What is the test:

File: StringEmptyOrNullTest.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java

/org/assertj/core/util/StringEmptyOrNullTest.java

- (~\assertj\assertj-core\src\test\java\org\assertj\core\util\StringEmptyOrNullTest.java)

Structure: The structure of these 2 tests is basic anatomy of a test (setup → test →

verify). It uses JUnit as well.

Technique: The technique I used is equivalence partitioning. Partition 1 is null, partition

2 is an empty string, and partition 3 is any non-empty string.

https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/util/Strings.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/util/Strings.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/util/StringEmptyOrNullTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/util/StringEmptyOrNullTest.java

Why: These are good tests because it is complete but minimal with easy readability. It is

also fast and tests good functionality.

Here are the pictures of the tests and evidence of running it through Maven

Commit:

After the tests passed, I committed it to the repository

Here is the link to the commit:

https://github.com/Nicklavi11/assertj/commit/dbfc34859a6785b740819a42422c5613c14

8e2ed

https://github.com/Nicklavi11/assertj/commit/dbfc34859a6785b740819a42422c5613c148e2ed
https://github.com/Nicklavi11/assertj/commit/dbfc34859a6785b740819a42422c5613c148e2ed

Test Case #3

What is the class and method I am testing:

File: NumberAssert.java

- https://github.com/ST-Spring-25/assertj/blob/main/assertj-core/src/main/java/org/

assertj/core/api/NumberAssert.java

- (~assertj/assertj-core/src/main/java/org/assertj/core/api/NumberAssert.java)

Class: NumberAssert is a class that is for all numeric types, such as Integer, Long,

Float, etc, and it adds readable methods such as isPositive(), isZero(), and isBetween(),

which verify numeric ranges while generating clear failure messages.

Method: The method I am testing is isBetween(start, end), and it passes when start <=

actual <= end and fails otherwise. It is inclusive on both ends and throws an

AssertionError with a descriptive message when the actual value is out of range.

What is the test:

File: NumberRangeTest.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java

/org/assertj/core/api/NumberRangeTest.java

- (~/assertj/assertj-core/src/test/java/org/assertj/core/api/NumberRangeTest.java)

Structure: The structure of these tests is basic anatomy of a test. It also uses JUnit.

Technique: The testing technique is boundary value testing (min, min + 1, typical, max -

1, max). I am testing between numbers 1 and 100. Input for min is 1, min + 1 is 2,

typical is 50, max - 1 is 99, and max is 100.

Why: This is a great candidate for Boundary tests because it can test critical points and

catch errors one by one. It uses assertj’s assertion so intent and failure messages are

https://github.com/ST-Spring-25/assertj/blob/main/assertj-core/src/main/java/org/assertj/core/api/NumberAssert.java
https://github.com/ST-Spring-25/assertj/blob/main/assertj-core/src/main/java/org/assertj/core/api/NumberAssert.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/NumberRangeTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/NumberRangeTest.java

clear, and each case is independent, so there is no randomness. It gives full confidence

in isBetween for integer input without over-testing inputs.

Here are the pictures of the tests and evidence of running it through Maven

Commit:

After the tests passed, I committed it to the repository

Here is the link to the commit:

https://github.com/ST-Spring-25/assertj/commit/b83f5987744687cca825e3ebee3eacf8d

9477c40

https://github.com/ST-Spring-25/assertj/commit/b83f5987744687cca825e3ebee3eacf8d9477c40
https://github.com/ST-Spring-25/assertj/commit/b83f5987744687cca825e3ebee3eacf8d9477c40

Test Case #4

What is the class and method I am testing:

File: AbstractCharSequenceAssert.java

- https://github.com/Nicklavi11/assertj/blob/main/assertj-core/src/main/java/org/ass

ertj/core/api/AbstractCharSequenceAssert.java

- (~/assertj/assertj-core/src/main/java/org/assertj/core/api/AbstractCharSequenceAssert.java)

Class: The AbstractCharSequenceAssert is a base class that powers assertj assertion

for charSequence types. It has high-level text that checks and returns SELF for good

chaining.

Method: The method I am testing is isNotBlank(), which is only successful when the

actual value is not null, not empty, and has at least one non-whitespace character. If it is

not successful, it throws an AssertionError with a meaningful message.

What is the test:

File: StringValidationTest.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java

/org/assertj/core/api/StringValidationTest.java

- (~/assertj/assertj-core/src/test/java/org/assertj/core/api/StringValidationTest.java)

Structure: The test structure is the anatomy of a test. It also uses JUnit and the

@Disabled annotation to make sure the Maven build is successful. The tests are

designed to fail and use assertThatThrownBy for checking it correctly, which is

successful for this test.

Technique: The technique for these tests is Equivalence Partitioning.

https://github.com/Nicklavi11/assertj/blob/main/assertj-core/src/main/java/org/assertj/core/api/AbstractCharSequenceAssert.java
https://github.com/Nicklavi11/assertj/blob/main/assertj-core/src/main/java/org/assertj/core/api/AbstractCharSequenceAssert.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/StringValidationTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/StringValidationTest.java

Why: These tests are good because they trigger every internal branch, such as valid,

empty, whitespace, and null. It is also very readable, and it has failure-expected tests

that are present but are disabled, so it does not break the build.

Here are the pictures of the tests and evidence of running through Maven. The tests are

captured before the @Disabled annotation, and it fails through Maven, which is

evidence of success in this test:

Commit:

After the tests passed (with the @Disabled annotation), I committed it to the repository

Here is the link to the commit:

https://github.com/ST-Spring-25/assertj/commit/2f6fc249846d916be63b50dee93f92483f

f977ba

https://github.com/ST-Spring-25/assertj/commit/2f6fc249846d916be63b50dee93f92483ff977ba
https://github.com/ST-Spring-25/assertj/commit/2f6fc249846d916be63b50dee93f92483ff977ba

Test Case #5

What is the class and method I am testing:

File: Lists.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/jav

a/org/assertj/core/util/Lists.java

- (~/assertj/assertj-core/src/main/java/org/assertj/core/util/Lists.java)

Class: The Lists class is a small helper class in assertj that offers methods for ArrayList

creation.

Method: The method I am testing is newArrayList(T… elements), which creates new

ArrayLists. It returns an empty ArrayList when no arguments are there or a list with

pre-populated elements that are provided in the correct order.

What is the test:

File: ListsTest.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java

/org/assertj/core/util/ListsTest.java

- (~/assertj/ assertj-core/src/test/java/org/assertj/core/util/ListsTest.java)

Structure: The structure is the basic anatomy of a test. It also uses JUnit.

Technique: The technique is Equivalence Partitioning. Partition 1 is 0 arguments,

partition 2 is exactly 1 argument, and partition 3 is 2 or more arguments.

Why: These tests work because they cover all logical paths with only 3 tests and ensure

both size and content correctness. It uses the helper to check these tests, and if it

returns null, it immediately fails these tests and protects calls in assertJ.

https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/util/Lists.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/util/Lists.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/util/ListsTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/util/ListsTest.java

Here are the pictures of the tests and evidence of running through Maven:

Commit:

After the tests passed, I committed it to the repository

Here is the link to the commit:

https://github.com/ST-Spring-25/assertj/commit/12653c350b12e00fe1e46b44e78ed95e

95d51d91

https://github.com/ST-Spring-25/assertj/commit/12653c350b12e00fe1e46b44e78ed95e95d51d91
https://github.com/ST-Spring-25/assertj/commit/12653c350b12e00fe1e46b44e78ed95e95d51d91

Test Case #6

What is the class and method I am testing:

File: Condition.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/jav

a/org/assertj/core/api/Condition.java

- (~/assertj/assertj-core/src/main/java/org/assertj/core/api/Condition.java)

Class: The Condition class is used to define custom conditions for assertions.

Method: The Method I am testing is a subclass, and its functionality is to return true if

the value satisfies the condition and false when it doesn't.

What is the test:

File: ConditionTest.java

- https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java

/org/assertj/core/api/ConditionTest.java

- (~/assertj/assertj-core/src/test/java/org/assertj/core/api/ConditionTest.java)

Structure: The structure of the test is mock-based, and it uses Mockito.

Technique: The technique is Mock testing. It replaces the Condition with a mock, and

explicitly controls its matched return value, and verifies the method is used with the

expected argument.

Why: This test works because it uses a Condition to make sure the external code can

rely on the interaction. It shows both positive and negative branches with simplicity. It is

fast, deterministic, and does not need external resources, which is good for tests.

Here are the pictures of the tests and evidence of running through Maven:

https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/api/Condition.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/main/java/org/assertj/core/api/Condition.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/ConditionTest.java
https://github.com/Nicklavi11/assertj/blob/add-test-cases/assertj-core/src/test/java/org/assertj/core/api/ConditionTest.java

Commit:

After the tests passed, I committed it to the repository

Here is the link to the commit:

https://github.com/ST-Spring-25/assertj/commit/f44931f6a0275f9c0c1f750aa369fd5296

bcca88

https://github.com/ST-Spring-25/assertj/commit/f44931f6a0275f9c0c1f750aa369fd5296bcca88
https://github.com/ST-Spring-25/assertj/commit/f44931f6a0275f9c0c1f750aa369fd5296bcca88

Commons-text:

Apache Commons Text is a Java library that gives developers utilities for working with

and manipulating strings. This improves the Java String class by giving it more flexibility,

and it is a part of other Apache Commons libraries. Commons text focuses on advanced

string operations, and its features are string similarity metrics, random string generators,

escaping/unescaping, string substitution, etc. This is a great candidate for creating tests

because it has great utility classes with clear input and output, and it also supports

many black-box testing techniques.

Here is the link for the pull request made for commons-text:

https://github.com/ST-Spring-25/commons-text/pull/3

https://github.com/ST-Spring-25/commons-text/pull/3

Test Case #7

What is the class and method I am testing:

File: WordUtils.java

- https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/java/or

g/apache/commons/text/WordUtils.java

- (~/commons-text/src/main/java/org/apache/commons/text/WordUtils.java)

Class: The WordUtils class has utility methods that have several different operations in

strings.

Method: The capitalize(String str) method takes the input string and capitalizes the first

character of each word. It returns the converted uppercase words, and if the input is

null, it returns null. If it is empty, it returns an empty string. The method does not change

any whitespace and the case of other characters.

What is the test:

File: CapitalizeTest.java

- https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/

apache/commons/text/CapitalizeTest.java

- (~/commons-text/src/test/java/org/apache/commons/text/CapitalizeTest.java)

Structure: I have made 8 different test cases that cover a variety of different types of

inputs. It also uses JUnit.

Technique: The technique used is Equivalence Partitioning. It tests inputs that represent

categories of behavior, such as valid simple inputs, null, empty string, mixed or complex

formatting, to see how the method behaves around several different input types.

https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/java/org/apache/commons/text/WordUtils.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/java/org/apache/commons/text/WordUtils.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/CapitalizeTest.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/CapitalizeTest.java

Why: These are good tests because they cover a variety of major use cases in the

method. It checks many common input types while also checking boundary and edge

cases. Each test is very simple, clear, and fast to run, which makes them good test

cases to make sure the method in this class works properly.

Here are the pictures of the tests passing and evidence of running it through Maven

Commit:

After the tests passed, I committed it to the repository:

Link for this commit:

https://github.com/ST-Spring-25/commons-text/pull/3/commits/c8432c69c0408b6e0abd

4f3874431f969b129874

https://github.com/ST-Spring-25/commons-text/pull/3/commits/c8432c69c0408b6e0abd4f3874431f969b129874
https://github.com/ST-Spring-25/commons-text/pull/3/commits/c8432c69c0408b6e0abd4f3874431f969b129874

Test Case #8

What is the class and method I am testing:

File: JaroWinklerDistance.java

- https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/java/or

g/apache/commons/text/similarity/JaroWinklerDistance.java

- (~/commons-text/src/main/java/org/apache/commons/text/similarity/JaroWinklerDistance.java)

Class: The JaroWinklerDistance class provides an implementation of the Jaro-Winkler

distance algorithm. This algorithm measures the similarity between two character

sequences. It applies a distance to the measurement; a 1.0 is not similar at all, and 0.0

is perfectly similar.

Method: The method I am testing is apply(CharSequence left, CharSequence right). It

returns a Double representing how different the 2 strings are and throws an

IllegalArgumentException if one of the inputs is null. This method is useful for checking

the spelling of words, and it measures the distance between strings.

What is the test:

File: JaroWinklerDistanceScoreTest.java

- https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/

apache/commons/text/similarity/JaroWinklerDistanceScoreTest.java

- (~/commons-text/src/test/java/org/apache/commons/text/similarity/JaroWinklerDistanceScoreTest.java)

Structure: The structure of the test uses a common test case, which is the word “hello”.

This keeps the testing consistent with a similar case for each test. It also uses JUnit.

Technique: The technique used is Boundary Value testing, which covers both ends of

the score range and a typical case in between. The min is a perfect match (0.0), the

min+1 is a slightly different match (greater than 0.0, less than 0.1), the typical is a

https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/java/org/apache/commons/text/similarity/JaroWinklerDistance.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/main/java/org/apache/commons/text/similarity/JaroWinklerDistance.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/similarity/JaroWinklerDistanceScoreTest.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/similarity/JaroWinklerDistanceScoreTest.java

moderate similarity (greater than 0.1, less than 0.5), and max-1 is an almost completely

different match (greater than 0.5, less than 1.0), and the max is a completely different

match(1.0). I rounded each score to the nearest hundredth, and I double checked this

algorithm with an online Jaro-Winkler distance calculator (Link to website:

https://tilores.io/jaro-winkler-distance-algorithm-online-tool).

Why: This is a good test because it covers the full range of behavior for the method and

tests exact matches, partial similarity, and completely different cases. It uses readable

and clear assertions with measurable ranges, and the tests are double checks with an

outside source to confirm that the tests are valid.

Here are the pictures of the tests passing and evidence of running it through Maven

https://tilores.io/jaro-winkler-distance-algorithm-online-tool

Commit:

After the tests passed, I committed it to the repository:

Link for this commit:

https://github.com/ST-Spring-25/commons-text/pull/3/commits/51ac1e874a2b972c46e2

9aac0bcd47d89b56c047

https://github.com/ST-Spring-25/commons-text/pull/3/commits/51ac1e874a2b972c46e29aac0bcd47d89b56c047
https://github.com/ST-Spring-25/commons-text/pull/3/commits/51ac1e874a2b972c46e29aac0bcd47d89b56c047

Test Case #9

What is the class and method I am testing:

File: RandomStringGenerator.java

- https://github.com/Nicklavi11/commons-text/blob/master/src/main/java/org/apach

e/commons/text/RandomStringGenerator.java

- (~/commons-text/src/main/java/org/apache/commons/text/RandomStringGenerator.java)

Class: The RandomStringGenerator class is a utility class that is used to generate

random strings composed of characters from a specified range. It is a useful class in

testing, password creation, data generation, and several other scenarios where random

character sequences are needed.

Method: The method I am testing is generate(int length), which creates a random string

based on the given length in the input using the character rand defined in the

generator’s builder. In this test, the generator that was built uses characters from ‘a’ to

‘a’, and the method is supposed to return a string of 10 lowercase letters.

What is the test:

File: RandomStringGenerateTest.java

- https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/

apache/commons/text/RandomStringGenerateTest.java

- (~/commons-text/src/test/java/org/apache/commons/text/RandomStringGenerateTest.java)

Structure: The structure of the test is to generate a random string with any lowercase

letter of length 10. It uses the anatomy of a test, and it checks if it is null and that the

length is correct. It uses JUnit as well.

https://github.com/Nicklavi11/commons-text/blob/master/src/main/java/org/apache/commons/text/RandomStringGenerator.java
https://github.com/Nicklavi11/commons-text/blob/master/src/main/java/org/apache/commons/text/RandomStringGenerator.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/RandomStringGenerateTest.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/RandomStringGenerateTest.java

Technique: The technique used is black-box functional testing. It focuses on the output

and makes sure that it is not null and exactly the given length (10 characters). It does

not check how the string is built, which is normal for testing random behavior.

Why: This is a good test because it checks the generate() method for its proper length

and makes sure it is not null. It also makes sure the random string was built correctly in

the given range. It has clear and fast assertions, and is also easy to read, which is great

for automated testing.

Here are the pictures of the tests passing and evidence of running it through Maven

Commit:

After the tests passed, I committed it to the repository:

Link for this commit:

https://github.com/ST-Spring-25/commons-text/pull/3/commits/e1e81d5aaf97e05b8e928

28f4bba69a97b1fd9ae

https://github.com/ST-Spring-25/commons-text/pull/3/commits/e1e81d5aaf97e05b8e92828f4bba69a97b1fd9ae
https://github.com/ST-Spring-25/commons-text/pull/3/commits/e1e81d5aaf97e05b8e92828f4bba69a97b1fd9ae

Test Case #10

What is the class and method I am testing:

File: StringEscapeUtils.java

- https://github.com/ST-Spring-25/commons-text/blob/master/src/main/java/org/apa

che/commons/text/StringEscapeUtils.java

- (~/commons-text/src/main/java/org/apache/commons/text/StringEscapeUtils.java)

Class: The StringEscapeUtils class is a utility class that has methods to escape and

unescape strings for many different contexts, such as Java, HTML, XML, and JSON.

These methods are helpful when dealing with strings that have special characters that

need to be encoded safely.

Method: The method I am testing is escapeJava(String str). This method escapes

special characters, so it is safe to have in Java source code. So if there is a (“) it

becomes a (\”), and a backslash (\) becomes (\\).

What is the test:

File: StringEscapeUtilsTopDownTest.java

- https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/

apache/commons/text/StringEscapeUtilsTopDownTest.java

- (~/commons-text/src/test/java/org/apache/commons/text/StringEscapeUtilsTopDownTest.java)

Structure: The structure of this test takes the input of a string that has a double quote

and has an expected output that it verifies with the same quote but escapes. It uses

JUnit as well.

Technique: The technique it uses is top-down testing. It takes a high-level method with

an input that is known and compares the result against the known correct output. This

https://github.com/ST-Spring-25/commons-text/blob/master/src/main/java/org/apache/commons/text/StringEscapeUtils.java
https://github.com/ST-Spring-25/commons-text/blob/master/src/main/java/org/apache/commons/text/StringEscapeUtils.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/StringEscapeUtilsTopDownTest.java
https://github.com/Nicklavi11/commons-text/blob/add-test-cases/src/test/java/org/apache/commons/text/StringEscapeUtilsTopDownTest.java

test does not check how escaping is implemented, but it confirms the behavior is

correct.

Why: This is a good test because it targets a high-level utility function that is commonly

used in Java code generation, and it has a realistic and easy-to-understand example

that has special characters. It checks and verifies if it is correct, and the format of the

outpu,t and it is short, readable, and very self-contained.

Here are the pictures of the tests passing and evidence of running it through Maven

Commit:

After the tests passed, I committed it to the repository:

Link for this commit:

https://github.com/ST-Spring-25/commons-text/pull/3/commits/d6717b1ab6c3fc9146c95

abd9aa5c17a0f4df01f

https://github.com/ST-Spring-25/commons-text/pull/3/commits/d6717b1ab6c3fc9146c95abd9aa5c17a0f4df01f
https://github.com/ST-Spring-25/commons-text/pull/3/commits/d6717b1ab6c3fc9146c95abd9aa5c17a0f4df01f

Group contribution:

I have met with my group several times. My group members are Prabhjot Kaur,

Alexander Leali, and Robert Ventura. Each week since this project has been released,

we have met through Discord and in class meetings to discuss where we are while

working on this project. I have been given a ton of help from Prabhjot Kaur as she has

helped me format and create my project report while helping me navigate through many

of the projects and find testable methods. Alexander Leali helped me with making my

tests better and answered many of my questions that I have had. All of my group

members have talked and discussed our report and compared and contrasted them, as

well as helped each other find where to get testable methods in many different classes

and what are the best open-source projects to test. I helped everyone with many

different things such as helping her add required items to make the report better like

adding direct links to pull requests and commits while also teaching everyone how to

make the pull requests. These weekly group meetings have helped me make my report

amazing, and they have been very vital to creating this project report.

Conclusion

This project has helped me understand how to create real, meaningful test cases for

open-source Java libraries. I have learned a lot about reading and analyzing different

open-source projects and understanding what real code bases look like, and how I can

apply my skills to these. It has also shown me how to navigate and use GitHub better,

which is a vital skill that I can forever use. Throughout this project, I have gained a very

deep understanding of how to target specific behavior in different classes and methods.

In this project, I have made 10 different test cases, 6 in assertj and 4 in commons-text,

and I have used several different testing techniques, such as equivalence partitioning,

boundary value testing, mock testing, black-box testing, and top-down testing, which

have demonstrated what I have learned throughout this course. I have also practiced

with GitHub and worked with forks, branches, commits, and pull requests while verifying

each of my tests in Maven.

